eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
1
4
513175
The New Method for Optical Channel Drop Filter with High Quality Factor Based on Triangular Photonic Crystal Design
Abolfazl Abbaspour
abbaspour.abolfazl@yahoo.com
1
Hamed Alipour Banaei
alipour@iaut.ac.ir
2
alireza andalib
andalib@iaut.ac.ir
3
We have designed a new type of optical channel drop filter (CDF) based on two dimensionaltriangular lattice photonic crystals. CDF operation is based on coupling to the photonic crystalwaveguide. The proposed structure is optimized to work as a CDF for obtaining the CDFcharacteristics and band structure of the filter the finite difference time domain (FDTD) method andplane wave expansion (PWE) method are used respectively. Dropping efficiency at 1550nm andquality factor (Q) of our proposed structure are 96.36 % and 282.7, respectively. The quantities
http://jaiee.iau-ahar.ac.ir/article_513175_688c69bc344f3ac7da41e7cac28ff01b.pdf
Channel drop filter
FDTD method
Photonic crystal
Wavelength
eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
5
8
513176
A New Design of Photonic Crystal Filter and Power Splitter Based on Ring Resonators
Reza Ghavidel Barsary
rezaghavidelbarsary@yahoo.com
1
Alireza Andalib
andalib@iaut.ac.ir
2
Hamed Alipour-Banaei
h_alipour@tabrizu.ac.ir
3
Here, we propose an optical filter and an optical power splitter based on two-dimensionalphotonic crystal all circular ring resonators. These structures are made of a square lattice ofsilicon rods with the refractive index n1=3.464 surrounded by air (with refractive indexn2=1). First, we have designed the filter and by using that, we designed a power splitter. Thetransmission efficiency and Quality factor for both, an optical filter and an optical powersplitter, respectively, are more than 90% and 1000. Resonant modes of the all-circular ringresonator with their corresponding degenerated poles and the transmission spectra arecalculated using the PWE, and 2D-FDTD methods respectively.
http://jaiee.iau-ahar.ac.ir/article_513176_88d0736069bb5eb192898a1456875fa7.pdf
Filter
Photonic crystal
power splitter
Ring resonator
eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
9
16
513177
Modeling a Bank ATM with Two Directions Places Timed Petri Net (TPN)
nasrin fatholahzadeh
n-fatholahzadeh@iau-ahar.ac.ir
1
A Bank ATM is including controller, card authorization system and a teller unit .This paper explains howthis parts connects together. In this paper will be used of a new mode place in Petri nets. More systemsusually have a complex constructs. ATM will be simulated use of new mode place at this study. The Mainpart of this model is used of T.S.Staines model [1]. We discuss how a simple model of T.S.Staines modelbe used for new model in this study. At this work will be added money teller unit that was discussed inT.S.Staines model. Each main components of the system are identified and built using Petri Nets. Thefinal Model is live and exhibits repetitive, consistent behavior. The work presented here is continue of lastwork and can be further developed.
http://jaiee.iau-ahar.ac.ir/article_513177_d3af1d5c8b490bf2eab637ba3b668dc0.pdf
eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
17
24
513178
Lead-Lag Controllers Coefficients Tuning to Control Fuel Cell Based on PSO Algorithm
Noraddin Ghadimi
noradin1364@gmail.com
1
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag controller is used which its coefficientsare optimized based on PSO algorithms. In order to use this algorithm, first this problem has to be formulatedas an optimization problem, including objective function and constraints, and then to obtain the most desirablecontroller, PSO method is used to solve the problem. Simulation results for various loads in the time domain areperformed and the results show the capability of the proposed controller. Simulations show the accuracy of theproposed controller performance to achieve this goal.
http://jaiee.iau-ahar.ac.ir/article_513178_e5aaff1dff60f0d07e2c0e4a580d65e2.pdf
PEMFC
Fuel cell
Controller Sesign
PSO algorithm
eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
26
32
513179
Temperature Effect on THz Quantum Cascade Lasers
Aida Gholami
aida_gholami1986@yahoo.com
1
Hassan Rasooly
h_rasooly_s@yahoo.com
2
A simple semi-phenomenological model, which accurately predicts the dependence of thresholdcurrent for temperature of Resonant-phonon three well quantum cascade laser based on verticaltransitions is offered. We found that, the longitude optical phonon scattering of thermally excitedelectrons is the most important limiting factor for thermal performance of high frequency THz QCLs.In low frequency region, parasitic current increases the threshold current. Based on our model the useof materials with higher longitude optical phonon energy such as InGaAs/GaAsSb and decreasing thelower laser level lifetime can increase the maximum performance temperature. Our observations maycan be used to understand the notion of the effects of thermal electrons on reduction of laserperformance.
http://jaiee.iau-ahar.ac.ir/article_513179_1df6399eab5dbdd169649ff4cefeac32.pdf
Quantum cascade lasers
longitude optical phonon
intersubband transitions
Parasitic current
eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
33
44
513180
Robust Method for E-Maximization and Hierarchical Clustering of Image Classification
Shahin Shafei
shahin_shafei1987@yahoo.com
1
Tohid Sedghi
sedghi.tohid@gmail.com
2
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared twodifferent methods of combining different types of abstract regions, one that keeps them independent andone that intersects them. The intersection method had a higher performance as shown by the ROC curvesin our paper. We extended the EM-variant algorithm to model each object as a Gaussian mixture, and theEM-variant extension outperforms the original EM-variant on the image data set having generalizedlabels. Intersecting abstract regions was the winner in our experiments on combining two different typesof abstract regions. However, one issue is the tiny regions generated after intersection. The problem getsmore serious if more types of abstract regions are applied. Another issue is the correctness of doing so. Insome situations, it may be not appropriate to intersect abstract regions. For example, a line structureregion corresponding to a building will be broken into pieces if intersected with a color region. In futureworks, we attack these issues with two phase approach classification problem.
http://jaiee.iau-ahar.ac.ir/article_513180_d41d8cd98f00b204e9800998ecf8427e.pdf
Algorithm
Models
Mixture
Segmentation
eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
44
48
513181
Ultra Wideband Fabric-Based Slot Antenna on Human Body for Medical Application
Roya Heidari
royaheydari90@yahoo.com
1
Robab Kazemi
2
In this paper a new UWB textile slot antenna has been designed with high precision. This work aimed to makecloser steps towards real wearability by investigating the possibilities of designing wearable UWB antenna wheretextile materials are used for the substrate as well as the conducting parts of the designed antenna. The antenna iscomposed of three textile layers: the top and bottom are conducting layers and the third layer is a textile dielectriclayer and sandwiched between these two conducting layers. The developed antenna offers flexible, light-weight andbendable properties, and can be easily incorporated into clothing using a simple iron-on adhesive process. The irononprocess allows for the fabric to be washed without losing its adhesion. The antenna shows better than 13 dB returnloss and peak gain 5±2 dB over FCC UWB from 3.1 to 10.6 GHz. The antenna’s overall size is 5mm×5mm.
http://jaiee.iau-ahar.ac.ir/article_513181_bcea2bf631e2844d68213432e229c5d6.pdf
fabric antenna
UWB
slot antenna
textile substrate
medical application
eng
Ahar Branch,Islamic Azad University, Ahar,Iran
Journal of Artificial Intelligence in Electrical Engineering
2345-4652
2345-4652
2013-08-01
2
6
49
62
513182
Modified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles
Oveis Abedinia
1
ali Ghasemi
2
Noradin Ghadimi
ghadimi.noradin@gmail.com
3
Plug-in Hybrid Electric Vehicles (PHEV) technology shows great interest in the recent scientificliteratures. Vehicle-to-grid (V2G) is a interconnection of energy storage of PHEVs and grid. Byimplementation of V2G dependencies of the power system on small expensive conventional units canbe reduced, resulting in reduced operational cost. This paper represents an intelligent unitcommitment (UC) with V2G optimization based on Modified Harmony Search Algorithm (MHSA).MHSA was conceptualized using the musical process of searching for a perfect state of harmony, justas the optimization process seeks to find a global solution that is determined by an objective function.Intelligent UC with V2G optimization in power system is presented in this paper. Since the number ofPHEV in V2G is relatively high, UC with V2G optimization problem is more complex than the basicUC.A case study based on conventional 10-unit test system is conducted to facilitate the effectiveness ofthe proposed method. Results show a significant amount of cost reduction with integration of V2G inUC problem. Comparison of the results with those obtained by Particle Swarm Optimization showsthe effectiveness of the proposed method.
http://jaiee.iau-ahar.ac.ir/article_513182_af33228474e854da9e1b36092303a0fe.pdf
Unit Commitment (UC)
Vehicle-to-Grid (V2G)
Improved Harmony Search Algorithm
Plug-in Hybrid Electric Vehicle (PHEV)