Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control


Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but also a rather simple stability analysis is performed. The latter is usually a complicated task for nonlinear chaotic systems.


[1] Butzer PL, Westphal U. An introduction to fractional calculus. Singapore: World Scientific; 2000.
[2] Ahmed E, Elgazzar AS. On fractional order differential equations model for nonlocal epidemics. Physica A 2007;379:607–14.
[3] Ahmad WM, El-Khazali R. Fractional-order dynamical models of Love. Chaos Soliton Fract 2007;33:1367–75.
[4] A. Le Me´haute´ , Les Ge´ome´ tries Fractales, Eidtions Herme` s, Paris, France, 1990.
[5] R. de Levie, Fractals and rough electrodes, J. Electroanal. Chem. 281 (1990) 1–21.
[6] S. Westerlund, Dead matter has memory! (capacitor model), Phys. Scrip. 43 (2) (1991) 174–179.
[7] T. Kaplan, L.J. Gray, S.H. Liu, Self-affine fractal model for a metal-electrolyte interface, Phys. Rev. B 35 (10) (1987) 5379–5381.
[8] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.
[9] Y.G. Hong, J.K. Wang. Finite time stabilization for a class of nonlinear systems, 18 8th International Conference on Control, Automation, Robotics and Vision, Kunming, 2004, pp. 1194-1199.

[10] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou. The synchronization of chaotic systems, Physics Reports, 2002, 366:1-101.
[11] F. Liu, Y. Ren, X.M. Shan, Z.L. Qiu. A linear feedback synchronization theoremfor a class of chaotic systems, Chaos, Solitons and Fractals, 2002, 13:723-730.
[12] H. Zhang, X.K. Ma, W.Z. Liu. Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos, Solitons andFractals, 2004, 21:1249-1257.
[13] H. Fotsin, S. Bowong, J. Daafouz. Adaptive synchronization of two chaotic systems consisting of modified Van der Pol-Duffing and Chua oscillators, Chaos,Solitons and Fractals, 2005, 26:215-229.
[14] Dastranj, Mohammad Reza, Mojtdaba Rouhani, and Ahmad Hajipoor. "Design of Optimal Fractional Order PID Controller Using PSO Algorithm." International Journal of Computer Theory and Engineering 4, no. 3 (2012).
[15] A. Charef, H. H. Sun, Y. Y. Tsao, B. Onaral, IEEE Trans. Auto. Contr. 37: 1465-1470(1992)
[16] C. G. Li, G. R. Chen, Chaos, Solitons & Fractals 22, 549~554(2004)
[17] W. M. Ahmad, J. C. Sprott, Chaos Solitons & Fractals 16, 339-351(2003)
[18] H. Zhang, X.K. Ma, W.Z. Liu, Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos, Solitons Fractals 21 (2004) 1249–1257.
[19] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems and Application multi-conference, vol. 2, IMACS, in: IEEE-SMC Proceedings, Lille, France, July 1996,pp. 963–968.
[20] G. Chen, T. Ueta, Yet another attractor, Int. J. Bifurcation Chaos 9 (1999) 1465–1466.