• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Artificial Intelligence in Electrical Engineering
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 7 (2018)
Volume Volume 6 (2017)
Volume Volume 5 (2016)
Volume Volume 4 (2016)
Volume Volume 3 (2014)
Volume Volume 2 (2013)
Issue Issue 8
Issue Issue 7
Issue Issue 6
Issue Issue 5
Volume Volume 1 (2012)
(2014). Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control. Journal of Artificial Intelligence in Electrical Engineering, 2(8), 59-67.
. "Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control". Journal of Artificial Intelligence in Electrical Engineering, 2, 8, 2014, 59-67.
(2014). 'Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control', Journal of Artificial Intelligence in Electrical Engineering, 2(8), pp. 59-67.
Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control. Journal of Artificial Intelligence in Electrical Engineering, 2014; 2(8): 59-67.

Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control

Article 6, Volume 2, Issue 8, Winter 2014, Page 59-67  XML PDF (498.94 K)
Abstract
Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but also a rather simple stability analysis is performed. The latter is usually a complicated task for nonlinear chaotic systems.
Keywords
Fractional Calculus; fractional order active sliding mode controller; synchronization; Lu-Lu
References
[1] Butzer PL, Westphal U. An introduction to fractional calculus. Singapore: World Scientific; 2000.
[2] Ahmed E, Elgazzar AS. On fractional order differential equations model for nonlocal epidemics. Physica A 2007;379:607–14.
[3] Ahmad WM, El-Khazali R. Fractional-order dynamical models of Love. Chaos Soliton Fract 2007;33:1367–75.
[4] A. Le Me´haute´ , Les Ge´ome´ tries Fractales, Eidtions Herme` s, Paris, France, 1990.
[5] R. de Levie, Fractals and rough electrodes, J. Electroanal. Chem. 281 (1990) 1–21.
[6] S. Westerlund, Dead matter has memory! (capacitor model), Phys. Scrip. 43 (2) (1991) 174–179.
[7] T. Kaplan, L.J. Gray, S.H. Liu, Self-affine fractal model for a metal-electrolyte interface, Phys. Rev. B 35 (10) (1987) 5379–5381.
[8] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.
[9] Y.G. Hong, J.K. Wang. Finite time stabilization for a class of nonlinear systems, 18 8th International Conference on Control, Automation, Robotics and Vision, Kunming, 2004, pp. 1194-1199.

[10] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou. The synchronization of chaotic systems, Physics Reports, 2002, 366:1-101.
[11] F. Liu, Y. Ren, X.M. Shan, Z.L. Qiu. A linear feedback synchronization theoremfor a class of chaotic systems, Chaos, Solitons and Fractals, 2002, 13:723-730.
[12] H. Zhang, X.K. Ma, W.Z. Liu. Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos, Solitons andFractals, 2004, 21:1249-1257.
[13] H. Fotsin, S. Bowong, J. Daafouz. Adaptive synchronization of two chaotic systems consisting of modified Van der Pol-Duffing and Chua oscillators, Chaos,Solitons and Fractals, 2005, 26:215-229.
[14] Dastranj, Mohammad Reza, Mojtdaba Rouhani, and Ahmad Hajipoor. "Design of Optimal Fractional Order PID Controller Using PSO Algorithm." International Journal of Computer Theory and Engineering 4, no. 3 (2012).
[15] A. Charef, H. H. Sun, Y. Y. Tsao, B. Onaral, IEEE Trans. Auto. Contr. 37: 1465-1470(1992)
[16] C. G. Li, G. R. Chen, Chaos, Solitons & Fractals 22, 549~554(2004)
[17] W. M. Ahmad, J. C. Sprott, Chaos Solitons & Fractals 16, 339-351(2003)
[18] H. Zhang, X.K. Ma, W.Z. Liu, Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos, Solitons Fractals 21 (2004) 1249–1257.
[19] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems and Application multi-conference, vol. 2, IMACS, in: IEEE-SMC Proceedings, Lille, France, July 1996,pp. 963–968.
[20] G. Chen, T. Ueta, Yet another attractor, Int. J. Bifurcation Chaos 9 (1999) 1465–1466.
.

Statistics
Article View: 882
PDF Download: 551
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.